본문 바로가기
반응형

AI 수학2

[딥러닝 입문 - 2] 머신 러닝에 사용되는 수학 다음 장부터 3회에 걸쳐 딥러닝을 포함한 머신 러닝에 필요한 수학의 기초로 '미분', '선형 대수학', '확률 통계'의 3가지에 대한 요점을 짧게 소개하겠습니다. 그 전에, 이 장에서는 기계 학습(machine learning)의 개념에 대해 큰 틀을 잡고, 어느 부분에서 각 항목이 등장하는지 파악해 둡시다. 2.1 기계 학습이란? 기계 학습은 주어진 데이터에서 알 수 없는 데이터에 대하여 특정 규칙이나 패턴을 추출하고, 이를 바탕으로 미지의 데이터를 분류하거나 예측하는 방법을 연구하는 학문 영역입니다. 기계 학습은 다양한 기술에 응용되고 있으며, 예를 들어 화상 인식, 음성 인식, 문서 분류, 의료 진단, 스팸 메일 탐지, 상품 추천 등 다양한 분야에서 중요한 역할을 하고 있습니다. 2.2. 지도 학습.. 2020. 7. 7.
[알기쉬운 AI - 04] AI공부에 필요한 기본지식 3가지 AI를 배운다고 해도 그 목적은 다양합니다. “AI의 지식을 습득하여 엔지니어와 대등하게 이야기하고, AI를 사용한 참신한 사업제안이 가능했으면 좋겠습니다.”라든지, 스스로 끈질기게 머신러닝 알고리즘을 만들고 싶다는 등. 이번에는 ‘전문적인 AI엔지니어 및 데이터 과학자'가 되기 위해서는 어떤 공부를 하면 좋을지 필자의 주관을 바탕으로 소개하고자 합니다. 1. 수학 "수학"입니다. 네, 누가 뭐래도 수학입니다. AI를 형성하는 "머신러닝 데이터 분석"은 거의 대부분 숫자 컨트롤로 이루어져 있으며, 그들을 어떻게 읽어 내고 활용할지는 전부다 수학을 기반으로 이뤄집니다. 인공지능이라는 말만 듣고, 인간의 뇌를 기계로 재현한 거라고 생각하는 분이 계시다면 큰 실수입니다. AI 기술은 데이터 경향에서 가장 정확.. 2019. 11. 30.
반응형